
Supplementary Material for “An Efficient Privacy-Preserving

Algorithm for String Search and its Application to Genomics”

Kana Shimizu1,4,∗ Koji Nuida2,3 Gunnar Rätsch4,∗

1 Biotechnology Research Institute for Drug Discovery
National Institute of Advanced Industrial Science and Technology,

2-4-7 Aomi Koto-ku, Tokyo 135-0064, Japan,
2 Information Technology Research Institute,

National Institute of Advanced Industrial Science and Technology,
2-4-7 Aomi Koto-ku, Tokyo 135-0064, Japan,

3 Japan Science and Technology Agency (JST) PRESTO Researcher,
Tokyo, Japan

4 Computational Biology, Memorial Sloan Kettering Cancer Center,
1275 York, New York, NY, USA

S1 The sublinear communication size recursive oblivious transfer

In this section, we describe the detailed algorithm of the sublinear communication size recursive oblivious transfer. In
Section 3.2, we introduced the bit-rotation technique for the case of the linear communication size oblivious transfer.
As mentioned in Section 3.5, the same technique is also applied for the O(

√
N)-communication size oblivious transfer

(SC-OT).

S1.1 The sublinear communication size oblivious transfer

Let us review the SC-OT algorithm. In the SC-OT, the one encodes the position t by in a two dimensional representation:
t0 = t /d

√
N e, t1 = (t)modd

√
N e, where d·e denotes the ceil of the argument. The user sends Enc(t0) and ~Enc(q) to the

server, where
~Enc(q) = (Enc(q0 = 0) . . . ,Enc(qt1 = 1), . . . ,Enc(qd

√
N e−1 = 0)).

The server obtains random values rk for k = 0, . . . , d
√
N e − 1, and computes

ck =

d
√
N e−1⊕
i=0

(
v[k × d

√
N e+ i]⊗ Enc(qi)

)
⊕
(
rk ⊗ Enc(t0 − k)

)
,

and sends c = (c0, . . . , cd
√
N e−1) to the user. The user knows the result by the decryption: Dec(ct0). Note that

Enc(t0 − k) = Enc(0) iff. t0 = k, therefore the decryption of ci becomes a random value when i 6= t0. See the function
SCOT in Algorithm S1 for detailed description.

S1.2 Bit-rotation technique for the sublinear communication size oblivious transfer

In this section, we will describe a new algorithm for the sublinear communication size recursive oblivious transfer (SC-
ROT) by using the bit-rotation technique which is introduced in the main text. In order to apply bit-rotation technique
naturally to SC-OT, the server needs to return v[t] in the same two dimensional representation. The key idea here is that
the server creates v0 and v1 where v0[i] = v[i]/d

√
N e and v1[i] = (v[i])modd

√
N e, i = 0, . . . , N−1, and searches on both v0

and v1. The user obtains next t0 and t1 in randomized form by the search on v0 and v1 respectively using the same Enc(t0)

and ~Enc(q). For the search on v0[i], the server generates random value r0 ∈ {0, . . . , d
√
N e− 1} and returns an encrypted

value of t̂0 = (v0[i] + r0)modd
√
N e. For the search on v1[i], the server generates random value r1 ∈ {0, . . . , d

√
N e − 1}

and returns an encrypted value of t̂1 = (v1[i] + r1)modd
√
N e. The user decrypts the server’s return and obtains t̂0 and t̂1

to generate the next query Enc(t̂0) and ~Enc(q̂) = (Enc(q̂0 = 0) . . . ,Enc(q̂t̂1 = 1), . . . ,Enc(q̂d
√
N e−1 = 0)). Since the server

∗to whom correspondence should be addressed

1



Figure S1: The illustration for the removal of random factors in the server side. q and t0 show the plain text of the
user’s ’true’ query while q̂ and t̂0 show the plain text of the user’s query. The server recovers correct t1 by computing -r′1
rotated permutation of the server’s query q̂. It also recovers correct t0 by the homomorphic encryption: Enc(t̂0 − r′0).

knows r0 and r1, he/she can remove those random factors by Enc(t̂0 − r0) and the circular bit permutation Perm(q̂, r1)
before conducting the next search on v0 and v1. To implement such property for the server side, we designed the
server’s function SCROT which is described in Algorithm S1. It takes nine arguments: user’s query Enc(t̂0), ~Enc(q̂), a
vector to be searched vx (x ∈ {0, 1}), a random value r for randomizing the result, upper bound of the true value Lx
(x ∈ {0, 1}), random values r′0 and r′1 which were used for randomizing ’true’ values t0 and t1 in the previous round (i.e.,
t̂0 = t0 + r′0 and t̂1 = (t1 + r′1)modL1) and row length L0 and column length L1 of the two dimensional representation (i.e.,
L0 = L1 = d

√
N e for this case). Figure S1 illustrates the server process for removing random factors previously added

to the server’s return. Since Enc(t̂0− r′0) causes the position shift from t̂0 to (t̂0 − r′0)modL0
in server’s return c, the server

also needs another permutation Perm(c, −r′0) before returning the result. See Algorithm S1 for detailed description. By
this function SCROT, the server can add removable random factor to the result, and therefore it enables user to search v
recursively.

S1.3 Solving the problem caused by modulo operation of v[i] + r

In the function SCROT, the server generates random value r ∈ {0, . . . , d
√
N e − 1} and conducts randomization by:

(v[i] + r)modd
√
N e,

and returns Enc((v[i] + r)modd
√
N e) to the user.

Since the modulo operation yields different results for the same r according to the two conditions:

v[i] + r < d
√
N e

and
v[i] + r ≥ d

√
N e ,

and neither the user nor the server knows which condition is applied (note that the user’s choice v[i] and server’s random
value are their private information), the server needs to return two results assuming both conditions in the next round.
For the case of computing Enc(t0), the sever needs to compute both

c0 ← SCROT(Enc(t0), ~Enc(q),v0, r0, d
√
N e, r′0, r′1, d

√
N e, d

√
N e)

and
c′0 ← SCROT(Enc(t0), ~Enc(q),v0, r0, d

√
N e, (r′0 − d

√
N e), r′1, d

√
N e, d

√
N e) .

Since only one of c0,t0 and c′0,t0 becomes an encryption of a correct result and the other becomes an encryption of a

random value, user is able to obtain the next t0 by checking if 0 ≤ Dec(c0,t0) < d
√
N e or 0 ≤ Dec(c′0,t0) < d

√
N e (see the

function: SCChooseDec in Algorithm S1). In similar way, the user also obtains t1. Algorithm S2 shows the full description
of sublinear communication size recursive oblivious transfer algorithm taking into account of the above problem.

2



S2 The sublinear communication algorithm for PBWT − sec

In Section 3.3, the linear size communication algorithm for PBWT − sec is introduced. Here we introduce the sublinear
communication size algorithm by adapting SC-ROT to the search by PBWT . The goal is to find a set-longest match at
a given position t between a query S and a set of genotype sequences X in a privacy-preserving manner. in this section,
we consider that both t and S are private information and use the following model which is the same model as Model 3
in Section 3.4.

Model[n1] 1. The user is a private haplotype sequence holder, and the server is a holder of a set of private haplotype
sequences. The user has a vector of D positions T = (t1, . . . , tD). The user learns nothing but a set-longest match at a
given position t ∈ {t1, . . . , tD} between the query and the database while the server learns nothing about the user’s query
string. The server knows T but cannot identify which element the user queries.

Similar to the linear size communication algorithm for PBWT − sec, the server creates v(c) which is a look-up vector
for a letter c as follows:

v(c)[oj + i] =

{
CFc(P·,(tj+k)) + oj (i = 0)
CFc(P·,(tj+k)) + Rankc(P·,(tj+k), i) + oj (i 6= 0)

(1 ≤ j ≤ D, 0 ≤ i ≤M)

where oj = (j− 1)(M + 1) is an offset and k is an index which is initialized by −1 and incremented by 1 in each iteration
of recursive search. All those letter tables vc for c ∈ Σ are concatenated into one single vector v to minimize data
transfer overhead. When updating the interval to extend matches by a letter S[i], the user needs to specify the region
of v, which corresponds to a letter table v(S[i]). In our algorithm, we designed row length L0 and column length L1

for the two dimensional representation (L0 and L1 are not the matrix size of PBWT) such that elements of the same
position in the different letter tables should be placed in the same column after concatenating all the tables (i.e., (i)modL1

= (i+ |v(0)|)modL1
= (i+ |v(0)|+ |v(1)|)modL1

, . . .,= (i+
∑
c∈{0,...,|Σ|−2} |v(c)|)modL1

) in order that the user can specify

the letter table by choosing an offset added to row value (i.e., t̂0) of the query. For this purpose, the server configures
L1 =

√
D(M + 1)|Σ|, an offset factor L′0 = dD(M + 1)/L1e, L0 = L′0 × |Σ|, and extend each letter table v(c) to the

length of L′0L1 before the concatenation to make v (i.e., |v(0)| =, . . . ,= |v(|Σ|−1)| = L′0L1). To enable searching v(c) by
SC-ROT, the server converts all the elements in v into the two dimensional representation and stores them in two vectors
v0 and v1 each of them is of length L′0L1. Figure S2 is a graphical view of the rearrangement of v0 and v1.

Now the user is able to search v(c) recursively in an oblivious manner by using SC-ROT. In PBWT, the match is
reported as an interval (f, g] and the number of matches is equivalent to g − f . Since the user wants to start the search
from tx-th column on PBWT, user initialized f and g by f = ox, g = ox+M where oj = (j−1)(M+1) and computes two
dimensional representation of them: f0 = f/L1, f1 = (f)modL1

, g0 = g/L1, g1 = (g)modL1
. Then the user recursively

searches v(c) for updating f and g until he/she finds the match. For the i-th round of the recursive search, meaning that
the user updates the interval for finding matches ending with S[i], he/she adds an offset S[i]L′0 to f0 and g0 in order
to specify S[i]. For each round, the server also computes an encrypted flag whose plain text is equal to 0 iff. f = g.
Since there is also a similar problem caused by modulo operation discussed in the section S1.3, the server computes the
encrypted flag for the case of v[t] + r < L0 and v[t] + r ≥ L0. The detailed description of this part is described in the
function isSCLongest in Algorithm S3 and item 3-(b) of Algorithm S4. Finally, the user learns the set-longest match at t
by Dec(d). In order to hide the length of the set-longest match to the server, the user keep sending decoy queries until it
reaches to `-th round. Algorithm S3 and Algorithm S4 show a detailed algorithm of PBWT-sec.

3



Figure S2: The arrangement of elements of v0 when Σ = {0, 1, 2}. The length of v
(c)
0 for c ∈ Σ is designed such that

v
(0)
0 [i], v

(1)
0 [i] and v

(2)
0 [i] are aligned in the same column after the concatenation. The elements of v1 is also arranged in

the same manner.

Algorithm S1 Building blocks for sublinear communication size recursive oblivious transfer and PBWT − sec
1: function SCPrepQuery(t0, t1, L1)
2: q = (q0 = 0, . . . , qt1 = 1, . . . , qL1−1 = 0)

3: ~Enc(q) = (Enc(q1) . . . ,Enc(qL1))

4: return Enc(t0), ~Enc(q)
5: end function
6:

7: function SCOT(Enc(t0), ~Enc(q), v, L0, L1)
8: for k = 0 to L0 − 1 do
9: Generate random value rk

10: x = k × L1

11: ck =
⊕L1−1

i=0

(
v[x+ i]⊗ Enc(qi)

)
⊕ rk ⊗ Enc(t0 − k)

12: end for
13: return c = (c0, . . . , cL0−1)
14: end function
15:

16: function SCROT(Enc(t̂0), ~Enc(q̂), v, r, L, r′0, r′1, L0, L1)
17: v̂ ← (v + r)modL

18: c← SCOT(Enc(t̂0 − r′0), Perm( ~Enc(q̂), r′1), v̂, L0, L1)
19: c← Perm(c,−r′0) B recovering the original position
20: return c = (c0, . . . , cL0−1)
21: end function
22:

23: function SCChooseDec(c0, c1, L)
24: for x = 0 to 1 do
25: m← Dec(cx)
26: if (0 ≤ m < L)
27: return m
28: end if
29: end for
30: end function

4



Algorithm S2 The detailed protocol of the sublinear communication size recursive oblivious transfer.

• Public input: the database size N , query length `

• Private input of a user: a start position t ∈ 0, . . . , N − 1

• Private input of a server: a vector v of length N

0. (Key setup of cryptosystem) The user generates a key pair (pk, sk) by the key generation algorithm KeyGen for the additive-
homomorphic cryptosystem and sends public key pk to the server (the user and the server share public key pk and only the
user knows secret key sk).

1. (Server initialization) The server computes v0[i] = v[i]/d
√
N e, v1[i] = (v[i])modd

√
N e for i = 0, . . . , N − 1.

2. (User initialization) The user computes t0 = t/d
√
N e, t1 = (t)modd

√
N e.

3. (Recursive search)

Initializes the index by i← 1

while (i ≤ `) do

(a) (Query entry) The user performs the following steps:

• Prepare query

if (i 6= 1)
t0 ← Dec(c0,t0), t1 ← Dec(c1,t0)

end if

Enc(t0), ~Enc(q)← SCPrepQuery(t0, t1, d
√
N e)

• Sending Enc(t0), ~Enc(q) to the server.

(b) (Searching) The server performs the following steps:

if (i 6= `)

Generating random values r0,r1 ∈ {0, . . . , d
√
N e − 1}

else

r0 = 0, r1 = 0

end if
B ROT removes r′0, r

′
1 from a query and add r0 or r1 to each result.

c0 ← SCROT(Enc(t0), ~Enc(q), v0, r0, d
√
N e, r′0, r′1,d

√
N e, d

√
N e)

c′0 ← SCROT(Enc(t0), ~Enc(q), v0, r0, d
√
N e, (r′0 − d

√
N e), r′1,d

√
N e, d

√
N e)

c1 ← SCROT(Enc(t0), ~Enc(q), v1, r1, d
√
N e, r′0, r′1,d

√
N e, d

√
N e)

c′1 ← SCROT(Enc(t0), ~Enc(q), v1, r1, d
√
N e, (r′0 − d

√
N e), r′1,d

√
N e, d

√
N e)

r′0 ← r0, r′1 ← r1

• Sending c0, c
′
0, c1, c

′
1 to the user.

i← i+ 1

end while

4. (Decryption of the result) The user performs the following steps to obtain result x.

t0 ← SCChooseDec(c0,t0 , c
′
0,t0 , d

√
N e), t1 ← SCChooseDec(c1,t0 , c

′
1,t0 , d

√
N e)

x = t0 × d
√
N e+ t1

5



Algorithm S3 Building blocks for sublinear communication size PBWT − sec

1: function isSCLongest(Enc(f0), Enc(g0), ~Enc(qf ), ~Enc(qg))
2: for i = 0 to L1 − 1 do
3: Generating random value r
4: d = d⊕ Enc

(
r × (qf [i]− qg[i])

)
5: end for
6: Generating random value r
7: d = d⊕ Enc

(
r × (f0 − g0)

)
8: return d
9: end function

10:

11: function isSCLongestGTε(Enc(f0), Enc(g0), ~Enc(qf ), ~Enc(qg), ε)
12: for k = 0 to ε− 1 do . For the case that qg[i] = 1 move to q′g[j] when i > j

13: ~Enc(q′g) = Perm( ~Enc(qg), k) . q′f = Perm(q′g, k) iff. (g − f) = k
14: for i = L1 − k to L1 − 1 do
15: Enc(q′g[i]) = Enc(0) . Avoid a wrong match
16: end for
17: for i = 0 to L1 − 1 do
18: Generating random value r
19: d = d⊕ Enc

(
r × (q′f [i]− q′g[i])

)
20: end for
21: Generating random value r
22: dk = d⊕ Enc

(
r × (f0 − g0)

)
23: end for
24:

25: for k = 0 to ε− 1 do . For the case that qg[i] = 1 move to q′g[j] when i < j

26: ~Enc(q′g) = Perm( ~Enc(qg), k) . q′f = Perm(q′g, k) iff. (g − f) = k
27: for i = 0 to k do
28: Enc(q′g[i]) = Enc(0) . Avoid a wrong match
29: end for
30: for i = 0 to L1 − 1 do
31: Generating random value r
32: d = d⊕ Enc

(
r × (q′f [i]− q′g[i])

)
33: end for
34: Generating random value r
35: dε+k = d⊕ Enc

(
r × (f0 − g0 + 1)

)
36: end for
37: d = (d0, . . . , d2ε)
38: Shuffling order of elements in d
39: return d
40: end function
41:

6



Algorithm S4 The detailed description of sublinear communication size PBWT − sec for finding a set-longest match at position t.

• Public input: The length of column M , a set of alphabet letters Σ = {0, 1, .., |Σ| − 1} and a set of (D − 1) decoy positions and true position
T = (t1, . . . , tD).

• Private input of a user: A starting column tx ∈ T , a query sequence S of length `

• Private input of a server: PBWT matrix P ∈ NM×N

0. (Key setup of cryptosystem) The user generates a key pair (pk, sk) by the key generation algorithm KeyGen for the additive-homomorphic
cryptosystem and sends public key pk to the server (while only the user knows secret key sk).

1. (Server initialization)

• The server computes L1 =
√

D(M + 1)|Σ|, L′0 = dD(M + 1)/L1e, L0 = L′0 × |Σ| and announces L0, L1 and L′0 to the user.

2. (User initialization)

• The user initialize a half-open interval (f, g] by f = ox, g = ox + M where oj = (j − 1)(M + 1).

• The user computes two dimensional representation of (f, g] by f0 ← f/L1, f1 ← (f)modL1
, g0 ← g/L1, g1 ← (g)modL1

3. (Recursive search) Initializes the indices by i← 1 k ← −1

while (i ≤ `) do

(a) (Query entry) The user performs the following steps:

• Prepare next query:
f0 ← f0 + S[i]L′0, g0 ← g0 + S[i]L′0 B Setting offset to search matches ending with S[i](
Enc(f0), ~Enc(qf )

)
← SCPrepQuery(f0, f1, L1),

(
Enc(g0), ~Enc(qg)

)
← SCPrepQuery(g0, g1, L1)

• Sending Enc(f0), ~Enc(qf ), Enc(g0), ~Enc(qg), Enc(S[i]) to the server.

(b) (Searching) The server performs the following steps:

• Computes vectors v(c) of length D × (M + 1) for all c ∈ Σ :

v(c)[oj + u] =

{
CFc(P·,(tj+k)) + oj (u = 0)

CFc(P·,(tj+k)) + Rankc(P·,(tj+k), u) + oj (1 ≤ u ≤M)

where oj = (j − 1)(M + 1) for j = 1, . . . , D.

• Creates vectors v
(c)
0 ,v

(c)
1 of length L′0 × L1 for c = 0, . . . , |Σ| − 1.

• Computes v
(c)
0 [i] = v(c)[i]/L1, v

(c)
1 [i] = (v(c)[i])modL1

for i = 0, . . . , D(M + 1)− 1 and c = 0, . . . , |Σ| − 1.

• Creates vectors v0 and v1 by concatenating v0 = v
(0)
0 , . . . ,v

(|Σ|−1)
0 and v1 = v

(0)
1 , . . . ,v

(|Σ|−1)
1 .

• Generates random values r
(f)
0 , r

(g)
0 ∈ {0, . . . , L0 − 1}, r(f)

1 , r
(g)
1 ∈ {0, . . . , L1 − 1}

• Computes next intervals and an encrypted flag showing if the match is the longest

c
(f)
0 ← SCROT†(Enc(f0), ~Enc(qf ), v0, r

(f)
0 , L0, r

′(f)
0 , r

′(f)
1 , L0, L1),

c′
(f)
0 ← SCROT†(Enc(f0), ~Enc(qf ), v0, r

(f)
0 , L0, (r

′(f)
0 − L0), r

′(f)
1 , L0, L1),

c
(f)
1 ← SCROT†(Enc(f0), ~Enc(qf ), v1, r

(f)
1 , L1, r

′(f)
0 , r

′(f)
1 , L0, L1),

c′
(f)
1 ← SCROT†(Enc(f0), ~Enc(qf ), v1, r

(f)
1 , L1, (r

′(f)
0 − L0), r

′(f)
1 , L0, L1),

c
(g)
0 ← SCROT†(Enc(g0), ~Enc(qg), v0, r

(g)
0 , L0, r

′(g)
0 , r

′(g)
1 , L0, L1),

c′
(g)
0 ← SCROT†(Enc(g0), ~Enc(qg), v0, r

(g)
0 , L0, (r

′(g)
0 − L0), r

′(g)
1 , L0, L1)

c
(g)
1 ← SCROT†(Enc(g0), ~Enc(qg), v1, r

(g)
1 , L1, r

′(g)
0 , r

′(g)
1 , L0, L1),

c′
(g)
1 ← SCROT†(Enc(g0), ~Enc(qg), v1, r

(g)
1 , L1, (r

′(g)
0 − L0), r

′(g)
1 , L0, L1),

d0 ← isSCLongest(Enc(f0 − r
′(f)
0 ), Enc(g0 − r

′(g)
0 ), Perm( ~Enc(qf ), r

′(f)
1 ),Perm( ~Enc(qg),r

′(g)
1 ))

d1 ← isSCLongest(Enc(f0 − r
′(f)
0 + L0), Enc(g0 − r

′(g)
0 ), Perm( ~Enc(qf ), r

′(f)
1 ),Perm( ~Enc(qg),r

′(g)
1 ))

d2 ← isSCLongest(Enc(f0 − r
′(f)
0 ), Enc(g0 − r

′(g)
0 + L0), Perm( ~Enc(qf ), r

′(f)
1 ),Perm( ~Enc(qg),r

′(g)
1 ))

• Storing random values r
′(f)
0 ← r

(f)
0 , r

′(f)
1 ← r

(f)
1 , r

′(g)
0 ← r

(g)
0 , r

′(g)
1 ← r

(g)
1

• Sending c
(f)
0 , c′

(f)
0 , c

(f)
1 , c′

(f)
1 , c

(g)
0 , c′

(g)
0 , c

(g)
1 , c′

(g)
1 , d to the user

(c) (Decryption of the encrypted flag and the randomized interval) The user performs the following steps:

if (Dec(d0) == 0 || Dec(d1) == 0 || Dec(d2) == 0)

Reports the result S[1, . . . , i− 2] and sending the server decoy queries until i == `

else

Computes f0 ← SCChooseDec(c
(f)
0,f0

, c′
(f)
0,f0

, L′0), g0 ← SCChooseDec(c
(g)
0,g0

, c′
(g)
0,g0

, L′0),

f1 ← SCChooseDec(c
(f)
1,f0

, c′
(f)
1,f0

, L1), g1 ← SCChooseDec(c
(g)
1,g0

, c′
(g)
1,g0

, L1) B for choosing correct results

end if

i← i + 1 k ← k + 1

end while



Algorithm S5 Building blocks for linear communication size PBWT − sec
1: function isLongest( ~Enc(qf ), ~Enc(qg), r′(f), r′(g))

2: ~Enc(q′f ) = Perm( ~Enc(qf ), r′(f))

3: ~Enc(q′g) = Perm( ~Enc(qg), r
′(g))

4: for i = 0 to M do
5: Generating random value r
6: d = d⊕ Enc

(
r × (q′f [i]− q′g[i])

)
7: end for
8: return d
9: end function

10:

11: function isLongestGTε( ~Enc(qf ), ~Enc(qg), r′(f), r′(g), ε)
12: for k = 0 to ε− 1 do
13: ~Enc(q′f ) = Perm( ~Enc(qf ), r′(f))

14: ~Enc(q′g) = Perm( ~Enc(qg), r
′(g))

15: ~Enc(q′g) = Perm( ~Enc(qg), k) . q′f = Perm(q′g, k) iff. (g − f) = k
16: for i = 0 to M do
17: Generating random value r
18: d = d⊕ Enc

(
r × (q′f [i]− q′g[i])

)
19: end for
20: dk = d
21: end for
22: d = (d0, . . . , dε)
23: Shuffling order of elements in d
24: return d
25: end function

8


